A Seemingly Impossible Problem III

<p>Another <strong><span style="color:#8e44ad;">Seemingly Impossible Problem to Solve</span></strong>, this time with a trapezoid!</p> <p><strong><span style="color:#e74c3c;">The Problem</span></strong></p> <p>What is the area of the trapezoid below?</p> <center><svg height="166.2857208251953" style=" width:661.8285522460938px; height:166.2857208251953px; background: #FFF; fill: none; " width="661.8285522460938" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M224,129.8 L313.6,30.26 L359,30.26 L448.6,129.8 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="164.45713806152344" style="width:660px;height:164.45713806152344px;font-family:Asana-Math, Asana;background:#FFF;" width="660" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,327.91424560546875,23.65714111328125)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,324.91424560546875,150.8571533203125)"><path d="M409 603L47 -1L157 -1L497 659L497 689L44 689L44 477L74 477L81 533C89 595 96 603 142 603Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,402.91424560546875,72.85713806152344)"><path d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,406.91424560546875,124.91427612304688)"><path d="M280 181L280 106C280 46 269 32 220 30L158 27L158 -3C291 0 291 0 315 0C339 0 339 0 472 -3L472 27L424 30C375 33 364 46 364 106L364 181C423 181 444 180 472 177L472 248L364 245L365 697L285 667L2 204L2 181ZM280 245L65 245L280 597ZM958 253C958 366 877 446 763 446C715 446 679 443 626 396L626 605L931 604L931 689L574 690L574 322L594 316C641 363 668 377 717 377C813 377 873 309 873 201C873 90 809 25 700 25C646 25 596 43 582 69L536 151L512 137C535 80 547 48 561 4C589 -11 629 -20 672 -20C800 -20 958 89 958 253ZM1197 689C1115 689 1048 622 1048 539C1048 456 1115 389 1198 389C1279 389 1348 457 1348 537C1348 621 1281 689 1197 689ZM1197 649C1258 649 1308 599 1308 537C1308 479 1258 429 1198 429C1137 429 1088 478 1088 539C1088 600 1137 649 1197 649Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g></svg> </svg></center> <p>What if we were to draw two perpendicular lines like so?</p> <center><svg height="144.60000610351562" style=" width:661.8285522460938px; height:144.60000610351562px; background: #FFF; fill: none; " width="661.8285522460938" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M224,129.8 L313.6,30.26 L359,30.26 L448.6,129.8 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M359,30.26 L359.6,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M313.6,30.26 L314.2,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M359.6,116.57 L372.29,116.57 L372.29,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M314.2,116.57 L326.89,116.57 L326.89,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="142.77142333984375" style="width:660px;height:142.77142333984375px;font-family:Asana-Math, Asana;background:#FFF;" width="660" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,329.91424560546875,24.65714111328125)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,402.91424560546875,72.85713806152344)"><path d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,406.91424560546875,124.91427612304688)"><path d="M280 181L280 106C280 46 269 32 220 30L158 27L158 -3C291 0 291 0 315 0C339 0 339 0 472 -3L472 27L424 30C375 33 364 46 364 106L364 181C423 181 444 180 472 177L472 248L364 245L365 697L285 667L2 204L2 181ZM280 245L65 245L280 597ZM958 253C958 366 877 446 763 446C715 446 679 443 626 396L626 605L931 604L931 689L574 690L574 322L594 316C641 363 668 377 717 377C813 377 873 309 873 201C873 90 809 25 700 25C646 25 596 43 582 69L536 151L512 137C535 80 547 48 561 4C589 -11 629 -20 672 -20C800 -20 958 89 958 253ZM1197 689C1115 689 1048 622 1048 539C1048 456 1115 389 1198 389C1279 389 1348 457 1348 537C1348 621 1281 689 1197 689ZM1197 649C1258 649 1308 599 1308 537C1308 479 1258 429 1198 429C1137 429 1088 478 1088 539C1088 600 1137 649 1197 649Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g></svg> </svg></center> <p>Doing so splits up the base into three parts: $2$ (from above), and the remaining distance $5$, divided by $2$, to get two line segments of $2.5$ each.</p> <center><svg height="206.25714111328125" style=" width:661.8285522460938px; height:206.25714111328125px; background: #FFF; fill: none; " width="661.8285522460938" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M224,129.8 L313.6,30.26 L359,30.26 L448.6,129.8 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M359,30.26 L359.6,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M313.6,30.26 L314.2,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M359.6,116.57 L372.29,116.57 L372.29,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M314.2,116.57 L326.89,116.57 L326.89,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M225.6,156.26 Q225.6,163.26 232.6,163.26 L325.1,163.26 Q335.1,163.26 335.1,170.26 Q335.1,163.26 345.1,163.26 M342.1,163.26 L437.6,163.26 Q444.6,163.26 444.6,156.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="204.42857360839844" style="width:660px;height:204.42857360839844px;font-family:Asana-Math, Asana;background:#FFF;" width="660" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,329.91424560546875,24.65714111328125)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,402.91424560546875,72.85713806152344)"><path d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,406.91424560546875,124.91427612304688)"><path d="M280 181L280 106C280 46 269 32 220 30L158 27L158 -3C291 0 291 0 315 0C339 0 339 0 472 -3L472 27L424 30C375 33 364 46 364 106L364 181C423 181 444 180 472 177L472 248L364 245L365 697L285 667L2 204L2 181ZM280 245L65 245L280 597ZM958 253C958 366 877 446 763 446C715 446 679 443 626 396L626 605L931 604L931 689L574 690L574 322L594 316C641 363 668 377 717 377C813 377 873 309 873 201C873 90 809 25 700 25C646 25 596 43 582 69L536 151L512 137C535 80 547 48 561 4C589 -11 629 -20 672 -20C800 -20 958 89 958 253ZM1197 689C1115 689 1048 622 1048 539C1048 456 1115 389 1198 389C1279 389 1348 457 1348 537C1348 621 1281 689 1197 689ZM1197 649C1258 649 1308 599 1308 537C1308 479 1258 429 1198 429C1137 429 1088 478 1088 539C1088 600 1137 649 1197 649Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,329.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,263.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204ZM623 111C593 111 566 83 566 53C566 23 593 -5 622 -5C654 -5 682 22 682 53C682 83 654 111 623 111ZM1207 253C1207 366 1126 446 1012 446C964 446 928 443 875 396L875 605L1180 604L1180 689L823 690L823 322L843 316C890 363 917 377 966 377C1062 377 1122 309 1122 201C1122 90 1058 25 949 25C895 25 845 43 831 69L785 151L761 137C784 80 796 48 810 4C838 -11 878 -20 921 -20C1049 -20 1207 89 1207 253Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,388.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204ZM623 111C593 111 566 83 566 53C566 23 593 -5 622 -5C654 -5 682 22 682 53C682 83 654 111 623 111ZM1207 253C1207 366 1126 446 1012 446C964 446 928 443 875 396L875 605L1180 604L1180 689L823 690L823 322L843 316C890 363 917 377 966 377C1062 377 1122 309 1122 201C1122 90 1058 25 949 25C895 25 845 43 831 69L785 151L761 137C784 80 796 48 810 4C838 -11 878 -20 921 -20C1049 -20 1207 89 1207 253Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,330.7928466796875,193.11429443359376)"><path d="M409 603L47 -1L157 -1L497 659L497 689L44 689L44 477L74 477L81 533C89 595 96 603 142 603Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g></svg> </svg></center> <p>And now using our $45$-$45$-$90$ rules, we can find the height of the trapezoid (in red):</p> <center><svg height="206.25714111328125" style=" width:661.8285522460938px; height:206.25714111328125px; background: #FFF; fill: none; " width="661.8285522460938" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M224,129.8 L313.6,30.26 L359,30.26 L448.6,129.8 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M359,30.26 L359.6,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M313.6,30.26 L314.2,129.26" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M359.6,116.57 L372.29,116.57 L372.29,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M314.2,116.57 L326.89,116.57 L326.89,129.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M225.6,156.26 Q225.6,163.26 232.6,163.26 L325.1,163.26 Q335.1,163.26 335.1,170.26 Q335.1,163.26 345.1,163.26 M342.1,163.26 L437.6,163.26 Q444.6,163.26 444.6,156.26" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="204.42857360839844" style="width:660px;height:204.42857360839844px;font-family:Asana-Math, Asana;background:#FFF;" width="660" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,329.91424560546875,24.65714111328125)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,402.91424560546875,72.85713806152344)"><path d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,406.91424560546875,124.91427612304688)"><path d="M280 181L280 106C280 46 269 32 220 30L158 27L158 -3C291 0 291 0 315 0C339 0 339 0 472 -3L472 27L424 30C375 33 364 46 364 106L364 181C423 181 444 180 472 177L472 248L364 245L365 697L285 667L2 204L2 181ZM280 245L65 245L280 597ZM958 253C958 366 877 446 763 446C715 446 679 443 626 396L626 605L931 604L931 689L574 690L574 322L594 316C641 363 668 377 717 377C813 377 873 309 873 201C873 90 809 25 700 25C646 25 596 43 582 69L536 151L512 137C535 80 547 48 561 4C589 -11 629 -20 672 -20C800 -20 958 89 958 253ZM1197 689C1115 689 1048 622 1048 539C1048 456 1115 389 1198 389C1279 389 1348 457 1348 537C1348 621 1281 689 1197 689ZM1197 649C1258 649 1308 599 1308 537C1308 479 1258 429 1198 429C1137 429 1088 478 1088 539C1088 600 1137 649 1197 649Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,329.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,263.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204ZM623 111C593 111 566 83 566 53C566 23 593 -5 622 -5C654 -5 682 22 682 53C682 83 654 111 623 111ZM1207 253C1207 366 1126 446 1012 446C964 446 928 443 875 396L875 605L1180 604L1180 689L823 690L823 322L843 316C890 363 917 377 966 377C1062 377 1122 309 1122 201C1122 90 1058 25 949 25C895 25 845 43 831 69L785 151L761 137C784 80 796 48 810 4C838 -11 878 -20 921 -20C1049 -20 1207 89 1207 253Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,388.7928466796875,150.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204ZM623 111C593 111 566 83 566 53C566 23 593 -5 622 -5C654 -5 682 22 682 53C682 83 654 111 623 111ZM1207 253C1207 366 1126 446 1012 446C964 446 928 443 875 396L875 605L1180 604L1180 689L823 690L823 322L843 316C890 363 917 377 966 377C1062 377 1122 309 1122 201C1122 90 1058 25 949 25C895 25 845 43 831 69L785 151L761 137C784 80 796 48 810 4C838 -11 878 -20 921 -20C1049 -20 1207 89 1207 253Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,330.7928466796875,193.11429443359376)"><path d="M409 603L47 -1L157 -1L497 659L497 689L44 689L44 477L74 477L81 533C89 595 96 603 142 603Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,362.7928466796875,88.11429443359376)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204ZM623 111C593 111 566 83 566 53C566 23 593 -5 622 -5C654 -5 682 22 682 53C682 83 654 111 623 111ZM1207 253C1207 366 1126 446 1012 446C964 446 928 443 875 396L875 605L1180 604L1180 689L823 690L823 322L843 316C890 363 917 377 966 377C1062 377 1122 309 1122 201C1122 90 1058 25 949 25C895 25 845 43 831 69L785 151L761 137C784 80 796 48 810 4C838 -11 878 -20 921 -20C1049 -20 1207 89 1207 253Z" fill="rgb(208,2,27)" fill-opacity="1" stroke="rgb(208,2,27)" stroke-opacity="1" stroke-width="8" transform="matrix(0.020399999999999998,0,0,-0.020399999999999998,0,0)"></path></g></g></g></g></svg> </svg></center> <p>To solve, use the area of a trapezoid formula:</p> <p>$$\frac{2+7}{2} \times 2.5 = \frac{9}{2} \times 2.5 = 4.5 \times 2.5 = 11.25$$</p>