Area of a Sector
<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-area-of-a-sector" target="_blank">Area of a Sector Exercise</a></p><p>Finding the <strong><span style="color:#8e44ad;">Area of a Sector</span></strong> in a circle is very similar to finding the length of the arc. You set up a proportion consisting of the ratio of the central angle to $360$° and the ratio of the sector area to the total area.</p>
<center><svg height="156.5916748046875" style="
width:661.0667114257812px;
height:156.5916748046875px;
background: #FFF;
fill: none;
" width="661.0667114257812" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M266.04,74.04 C266.04,37.59 295.59,8.04 332.04,8.04 C368.49,8.04 398.04,37.59 398.04,74.04 C398.04,110.49 368.49,140.04 332.04,140.04 C295.59,140.04 266.04,110.49 266.04,74.04 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="composite-shape"><path class="real" d=" M398.04,74.04 C398.04,106.75 373.8,133.88 342.08,138.9 L331.46,74.04 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: rgb(227, 104, 255); fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="155.52500915527344" style="width:660.0000610351562px;height:155.52500915527344px;font-family:Asana-Math, Asana;background:#FFF;" width="660.0000610351562" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,339.53338623046875,89.53334045410156)"><path d="M9 1C24 -7 40 -11 52 -11C85 -11 124 18 155 65L231 182L242 113C255 28 278 -11 314 -11C336 -11 368 6 400 35L449 79L440 98C404 68 379 53 363 53C348 53 335 63 325 83C316 102 305 139 300 168L282 269L317 318C364 383 391 406 422 406C438 406 450 398 455 383L469 387L484 472C472 479 463 482 454 482C414 482 374 446 312 354L275 299L269 347C257 446 230 482 171 482C145 482 123 474 114 461L56 378L73 368C103 402 123 416 142 416C175 416 197 375 214 277L225 215L185 153C142 86 108 54 80 54C65 54 54 58 52 63L41 91L21 88C21 53 13 27 9 1ZM698 689C616 689 549 622 549 539C549 456 616 389 699 389C780 389 849 457 849 537C849 621 782 689 698 689ZM698 649C759 649 809 599 809 537C809 479 759 429 699 429C638 429 589 478 589 539C589 600 638 649 698 649Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,356.53338623046875,69.53334045410156)"><path d="M368 365C371 403 376 435 384 476C373 481 369 482 364 482C333 482 302 458 266 407C227 351 188 291 172 256L204 408C208 425 210 438 210 450C210 470 202 482 187 482C166 482 128 461 54 408L26 388L33 368L65 389C93 407 104 412 113 412C123 412 130 403 130 390C130 332 87 126 47 -2L57 -9C72 -4 88 -1 111 4L124 6L150 126C168 209 191 262 235 319C269 363 296 384 318 384C333 384 343 379 354 365Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.017,0,0,-0.017,0,0)"></path></g></g></g></g></svg> </svg></center>
<p><strong><span style="color:#27ae60;">The Formula</span></strong></p>
<p><span style="font-size:22px;">$$\frac{x}{360} = \frac{sector \ area}{\pi r^2}$$</span></p>