Area of Regular Hexagon
<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-area-of-regular-hexagon-anhi" target="_blank">Area of Regular Hexagon Exercise</a></p><p>We've already discussed the area of an equilateral triangle:</p>
<p>$$half \times half \times \sqrt{3}$$</p>
<p>How can we use this to find the <strong><span style="color:#8e44ad;">Area of a Regular Hexagon</span></strong>? Well, what if I were to tell you that a regular hexagon is simply six equilateral triangles? Pretty cool, right?</p>
<center><svg height="181.74285888671875" style="
width:661.8285522460938px;
height:181.74285888671875px;
background: #FFF;
fill: none;
" width="661.8285522460938" x="0" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" y="0"> <svg class="role-diagram-draw-area" xmlns="http://www.w3.org/2000/svg"><g class="shapes-region" style="stroke: black; fill: none;"><g class="composite-shape"><path class="real" d=" M425.6,89.56 L379.95,168.63 L288.65,168.63 L243,89.56 L288.65,10.49 L379.95,10.49 Z" style="stroke-width: 1; stroke: rgb(0, 0, 0); fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M243,89.56 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M288.65,10.49 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M379.95,10.49 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M425.6,89.56 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M379.95,168.63 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g class="arrow-line"><path class="connection real" d=" M288.65,168.63 L334.3,89.56" stroke-dasharray="6 6" style="stroke: rgb(0, 0, 0); stroke-width: 1; fill: none; fill-opacity: 1;"></path></g><g></g></g><g></g><g></g><g></g></svg> <svg height="179.91429138183594" style="width:660px;height:179.91429138183594px;font-family:Asana-Math, Asana;background:#FFF;" width="660" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><g><g><g><g transform="matrix(1,0,0,1,280.91424560546875,69.93713806152344)"><path d="M418 -3L418 27L366 30C311 33 301 44 301 96L301 700L60 598L67 548L217 614L217 96C217 44 206 33 152 30L96 27L96 -3C250 0 250 0 261 0C292 0 402 -3 418 -3Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,326.91424560546875,47.93713806152344)"><path d="M16 23L16 -3C203 -3 203 0 239 0C275 0 275 -3 468 -3L468 82C353 77 307 81 122 77L304 270C401 373 431 428 431 503C431 618 353 689 226 689C154 689 105 669 56 619L39 483L68 483L81 529C97 587 133 612 200 612C286 612 341 558 341 473C341 398 299 324 186 204Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,372.91424560546875,70.93713806152344)"><path d="M462 224C462 345 355 366 308 374C388 436 418 482 418 541C418 630 344 689 233 689C165 689 120 670 72 622L43 498L74 498L92 554C103 588 166 622 218 622C283 622 336 569 336 506C336 431 277 368 206 368C198 368 187 369 174 370L159 371L147 318L154 312C192 329 211 334 238 334C321 334 369 281 369 190C369 88 308 21 215 21C169 21 128 36 98 64C74 86 61 109 42 163L15 153C36 92 44 56 50 6C103 -12 147 -20 184 -20C307 -20 462 87 462 224Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,373.91424560546875,126.9371533203125)"><path d="M280 181L280 106C280 46 269 32 220 30L158 27L158 -3C291 0 291 0 315 0C339 0 339 0 472 -3L472 27L424 30C375 33 364 46 364 106L364 181C423 181 444 180 472 177L472 248L364 245L365 697L285 667L2 204L2 181ZM280 245L65 245L280 597Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,328.91424560546875,145.9371533203125)"><path d="M459 253C459 366 378 446 264 446C216 446 180 443 127 396L127 605L432 604L432 689L75 690L75 322L95 316C142 363 169 377 218 377C314 377 374 309 374 201C374 90 310 25 201 25C147 25 97 43 83 69L37 151L13 137C36 80 48 48 62 4C90 -11 130 -20 173 -20C301 -20 459 89 459 253Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g><g><g><g><g transform="matrix(1,0,0,1,279.91424560546875,126.85142944335938)"><path d="M131 331C152 512 241 611 421 665L379 689C283 657 242 637 191 593C88 506 32 384 32 247C32 82 112 -20 241 -20C371 -20 468 83 468 219C468 334 399 409 293 409C216 409 184 370 131 331ZM255 349C331 349 382 283 382 184C382 80 331 13 254 13C169 13 123 86 123 220C123 255 127 274 138 291C160 325 207 349 255 349Z" fill="rgb(0,0,0)" fill-opacity="1" stroke="rgb(0,0,0)" stroke-opacity="1" stroke-width="8" transform="matrix(0.024480000000000002,0,0,-0.024480000000000002,0,0)"></path></g></g></g></g></svg> </svg></center>
<p>So, to find the area of a regular hexagon, simply find the area of one equilateral triangle and then multiply it by $6$.</p>
<p><strong><span style="color:#e74c3c;">Example</span></strong></p>
<p>What is the area of a regular hexagon with a side length of $8$?</p>
<p>$$6 \times (area \ of \ equilateral \ triangle)$$</p>
<p>$$6 \times (4 \times 4 \times \sqrt{3})$$</p>
<p>$$96\sqrt{3}$$</p>