<p><span style="font-size:22px"><a href="https://www.prepswift.com/quizzes/quiz/prepswift-at-leastmost-questions" target="_blank">At LEAST/MOST Questions Exercise</a></span></p><p>Sometimes GRE will throw these <strong><span style="color:#8e44ad;">AT LEAST / AT MOST Questions</span></strong> dealing with combinatorics and probability.</p>
<p><strong><span style="color:#e74c3c;">Example</span></strong></p>
<p style="margin-left: 40px;"><em>John flips a fair coin four times. What is the probability that he receives at least one heads?</em></p>
<p><strong>Solving The <u>Looooong</u> Way</strong></p>
<p>We could calculate the probability of every case that makes us "happy" and then add those probabilities to get the answer.</p>
<ul>
<li><strong>Case 1</strong>: HTTT
<ul>
<li>$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{4!}{1!3!} = \frac{4}{16}$</li>
</ul>
</li>
<li><strong>Case 2</strong>: HHTT
<ul>
<li>$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{4!}{2!2!} = \frac{6}{16}$</li>
</ul>
</li>
<li><strong>Case 3</strong>: HHHT
<ul>
<li>$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{4!}{3!1!} = \frac{4}{16}$</li>
</ul>
</li>
<li><strong>Case 1</strong>: HHHH
<ul>
<li>$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times = \frac{1}{16}$</li>
</ul>
</li>
</ul>
<p style="text-align: center;"><span style="color:#e74c3c;"><em>Add those four cases up</em></span></p>
<p style="text-align: center;"><span style="font-size:22px;">$\frac{4}{16} + \frac{6}{16} + \frac{4}{16} + \frac{1}{16} =$ <span style="color:#27ae60;">$\frac{15}{16}$</span></span></p>
<p><strong>Solving the <u>SHORT</u> Way</strong></p>
<p>Let's simply calculate the case or cases that make us NOT "happy" and subtract it or them from $1$.</p>
<ul>
<li>the <strong><u>ONLY</u></strong> case that makes us "unhappy": TTTT
<ul>
<li>$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$</li>
</ul>
</li>
</ul>
<p style="text-align: center;"><span style="color:#e74c3c;"><em>Subtract that from $1$</em></span></p>
<p style="text-align: center;"><span style="font-size:22px;">$1 - \frac{1}{16} =$ <span style="color:#27ae60;">$\frac{15}{16}$</span></span></p>
<p><strong><span style="color:#e74c3c;">Another Example</span></strong></p>
<p style="margin-left: 40px;"><em>The probability of rain on any given day is $0.25$. What is the probability that it rains <u>AT MOST</u> four days in a $5$-day period?</em></p>
<ul>
<li><strong>Step 1</strong>: Find the probability of the case or cases that make us unhappy.
<ul>
<li>Only one case makes us unhappy: RRRRR</li>
</ul>
</li>
</ul>
<p>$$(0.25)^5 = \left(\frac{1}{4}\right)^5 = \frac{1}{1024}$$</p>
<ul>
<li><strong>Step 2</strong>: Subtract the unhappy probability, or probabilities, from $1$.</li>
</ul>
<p style="text-align: center;"><span style="font-size:22px;">$1 - \frac{1}{1024} =$ <span style="color:#27ae60;">$\frac{1023}{1024}$</span></span></p>