Calculating SD (complex cases)

<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-calculating-sd-complex-cases" target="_blank">Calculating SD (complex cases) Exercise</a></p><p><strong><span style="color:#8e44ad;">Calculating the Standard Deviation in Complex Cases</span></strong> is relatively easy,&nbsp;<u>if you follow the process</u>.</p> <p>But first of all, what do we mean by &quot;in complex cases&quot;? We just mean a dataset that consists of three or more numbers that are not all equal to each other. For example, the dataset below would be a more complex case:</p> <p>$$1, 2, 3, 4, 5$$</p> <p><strong><span style="color:#27ae60;">Calculating Standard Deviation - The Process</span></strong></p> <p>What is the standard deviation of the dataset below?</p> <p>$$1, 4, 9, 16, 25$$</p> <p><strong><u>Step 1</u></strong>: Find the average of the dataset.</p> <p>$$\frac{1+4+9+16+25}{5} = 11$$</p> <p><strong><u>Step 2</u></strong>: Find the difference between each number in the dataset and the average. For example, our average is $11$ right? Notice how the first number in the dataset, $1$, is $10$ less than our average, so we would give it a difference value of $-10$. Here they are for all five numbers in the dataset:</p> <p>$$(1-11), (4-11), (9-11), (16-11), (25-11) = -10, -7, -2, 5, 14$$</p> <p><strong><u>Step 3</u></strong>: Calculate the sum of the square of each number found in step 2.</p> <p>$$(-10)^2 + (-7)^2 + (-2)^2 + 5^2 + 14^2 = 374$$</p> <p><strong><u>Step 4</u></strong>: Divide the number from step 3 by the number of items in the dataset (in our case $5$). Take the square root of that result.</p> <p>$$\sqrt{\frac{374}{5}} = \sqrt{74.8}$$</p> <p><span style="font-size:18px;"><span style="color:#27ae60;">$$\sigma \approx 8.65$$</span></span></p> <p><strong><span style="color:#8e44ad;">If You Want the Formula</span></strong></p> <p>It&#39;s ugly, but here ya go:</p> <p>$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$<br /> &nbsp;</p>