<p><a target="_blank" href="https://www.prepswift.com/quizzes/quiz/prepswift-exponent-rules-review">Exponent Rules Review Exercise</a></p><p>We can use the same exponent rules from arithmetic on algebraic variables too!</p>
<ol>
<li><strong>Rule 1:</strong> $x^{-a} = \frac{1}{x^a}$, for example: $x^{-3} = \frac{1}{x^3}$</li>
<li><strong>Rule 2:</strong> $x^{a}x^b = x^{a+b}$, for example: $x^{3}x^7 = x^{10}$</li>
<li><strong>Rule 3:</strong> $\frac{x^a}{x^b} = x^{a-b}$, for example: $\frac{t^5}{t^8} = t^{-3}$</li>
<li><strong>Rule 4:</strong> $x^0 = 1$ (except if $x$ = 0, since $0^0$ is undefined)</li>
<li><strong>Rule 5:</strong> $x^{a}y^{a} = (xy)^a$, for example: $a^{8}b^8 = (ab)^8$</li>
<li><strong>Rule 6:</strong> $(\frac{x}{y})^a = \frac{x^a}{y^a}$, for example: $(\frac{s}{t})^3 = \frac{s^3}{t^3}$</li>
<li><strong>Rule 7:</strong> $(x^a)^b = x^{ab}$, for example: $(z^3)^4 = z^{12}$</li>
</ol>
<p>Keep this in your toolkit when working with algebra, they can be very useful!</p>