Exterior Angle of Regular Polygon

<p><span style="font-size:22px"><a href="https://www.prepswift.com/quizzes/quiz/prepswift-exterior-angle-of-regular-polygon" target="_blank">Exterior Angle of Regular Polygon Exercise</a></span></p><p>From the previous video/mountain entry, we know that the sum of the exterior angles of ANY polygon is $360&deg;$. If the polygon is regular, we can leverage this fact to easily find the <strong><span style="color:#8e44ad;">Exterior Angle of a Regular Polygon</span></strong> with the following formula, where $n$ is the number of sides of the regular polygon:</p> <p style="text-align: center;">Exterior Angle of Regular Polygon $= \frac{360}{n}$</p> <p><strong><span style="color:#27ae60;">A List of Each Exterior Angle of Regular Polygons</span></strong></p> <ul> <li><strong>Regular Triangle (Equilateral Triangle)</strong>: $120&deg;$</li> <li><strong>Square</strong>: $90&deg;$</li> <li><strong>Regular Pentagon</strong>: $72&deg;$</li> <li><strong>Regular Hexagon</strong>: $60&deg;$</li> <li><strong>Regular Decagon (10 sides)</strong>: $36&deg;$</li> <li><strong>Regular 1,000-sided Polygon</strong>: $0.36&deg;$</li> </ul> <p>As you can see, the exterior angles get a wee bit small the more sides there are. But they never hit $0$.</p>