<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-functions-2" target="_blank">Functions 2 Exercise</a></p><p>This is called <span style="color:#27ae60;">Functions II</span> because there are two more complex things we need to consider.</p>
<p><strong><span style="color:#8e44ad;">The Input Does Not Always Equal $x$</span></strong></p>
<p>The vast majority of function problems look like $f(x)$ or $g(x)$ or something like that. Notice how you only see $x$ in the parentheses. However, you might encounter something like this:</p>
<p>$$f(x+5) = x^3 - x^2$$</p>
<p>In this case, the input is not simply $x$, but rather $x+5$. The problem then might ask you what $f(6)$ equals. In that case, you have to follow these steps:</p>
<p style="margin-left: 40px;"><strong>Step 1</strong>: Set $x+5$ equal to $6$ to get $x=1$.</p>
<p style="margin-left: 40px;"><strong>Step 2</strong>: Plug the $x=1$ into the function's output equation $x^3-x^2$ to get $1-1=0$.</p>
<p><strong><font color="#8e44ad">Functions Equal to Other Functions</font></strong></p>
<p>We briefly addressed this in the mountain entry for Functions I. Let's dive more into it here. These problems can get quite complex. For example...</p>
<p>$$f(2x) = (f(x))^2$$</p>
<p>What does this mean? If you take a look at the left side, notice how we're doubling the input with $2x$. And notice that, when we do that, the output gets squared. Here are some more examples:</p>
<p>$$f(\frac{x}{3}) = \sqrt{f(x)}$$</p>
<p style="margin-left: 40px;"><strong>Translation</strong>: When we divide the input by $3$, we take the square root of the output.</p>
<p>$$f(x^2) = (f(x))!$$</p>
<p style="margin-left: 40px;"><strong>Translation</strong>: When we square the input, we take the factorial of the output.</p>
<p><strong><span style="color:#8e44ad;">Example Problem </span></strong></p>
<p style="text-align: center;">If $f(x+7) = 2f(x)$, and $f(3) = 10$, what is $f(17)$?</p>
<p>To solve this, first translate the algebra: when we add $7$ to the input, we double the output.</p>
<p>$$f(3+7) = 2 \times 10$$</p>
<p>$$f(10) = 20$$</p>
<p>We repeat the process:</p>
<p>$$f(10+7) = 2 \times 20$$</p>
<p>$$f(17) = 40$$</p>
<p> </p>