Given Probability

<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-given-probability" target="_blank">Given Probability Exercise</a></p><p><strong><span style="color:#8e44ad;">Given Probability</span></strong> can be a tricky beast. In a nutshell, a given probability calculation assumes that only SOME cases are valid (not all of them). This changes the value of the denominator.&nbsp;</p> <p><strong><span style="color:#e74c3c;">An Easy Contrast to Illustrate Given Probability</span></strong></p> <p style="margin-left: 40px;"><strong><u>Scenario 1</u></strong>: An alien flips a fair coin twice. What is the probability it gets heads twice?</p> <p>$$\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4}$$</p> <p style="margin-left: 40px;"><strong><u>Scenario 2</u></strong>: An alien flips a fair coin twice. Given that the first flip was heads, what is the probability that the second flip will be heads?</p> <p style="text-align: center;"><span style="font-size:18px;">Well, that&#39;s just $\frac{1}{2}$ right?</span></p> <p>Yes, that is correct. Notice how the denominator in the first scenario is $4$. This makes sense because we&#39;re looking at four different possibilities, with only one of the possibilities making us &quot;happy.&quot;&nbsp;</p> <p style="text-align: center;"><span style="font-size:18px;">TT, HT, TH, <span style="color:#27ae60;">HH</span></span></p> <p>But in the second scenario, we&#39;re actually excluding two of the cases because we&#39;re &quot;assuming&quot; that the first flip must be heads. It is &quot;given&quot; that the first flip is heads. So the cases where tails is first are out.</p> <p style="text-align: center;"><span style="font-size:18px;"><span style="color:#e74c3c;"><s>TT</s></span>, HT, <span style="color:#e74c3c;"><s>TH</s></span>, <span style="color:#27ae60;">HH</span></span></p> <p><strong><span style="color:#e74c3c;">Another Example</span></strong></p> <p style="margin-left: 40px;"><em>A couple has four children. If it is assumed or &quot;given&quot; that at least two of the children are boys, what is the probability that all four are boys?</em></p> <p>If we wanted to solve this without the &quot;given&quot; part, it&#39;d be super straightforward. We would simply do $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$. But that won&#39;t work here. We have to exclude the cases that have zero boys or only one boy.</p> <ul style="margin-left: 40px;"> <li><strong><span style="color:#e74c3c;">$0$ boys</span></strong>: GGGG <ul> <li>How many ways can this&nbsp;happen?&nbsp;</li> <li>$\frac{4!}{4!} = 1$&nbsp;</li> <li><span style="color:#e74c3c;">exclude $1$ case</span></li> </ul> </li> <li><strong><span style="color:#e74c3c;">$1$ boy</span></strong>: BGGG <ul> <li>How many ways can this happen?</li> <li>$\frac{4!}{1!3!} = 4$</li> <li><span style="color:#e74c3c;">exclude $4$ cases</span></li> </ul> </li> <li><strong><span style="color:#27ae60;">$2$ boys</span></strong>: BBGG <ul> <li>How many ways can this happen?</li> <li>$\frac{4!}{2!2!} = 6$</li> <li><span style="color:#27ae60;">$6$ valid cases</span></li> </ul> </li> <li><strong><span style="color:#27ae60;">$3$ boys</span></strong>: BBBG <ul> <li>How many ways can this happen?</li> <li>$\frac{4!}{3!1!} = 4$</li> <li><span style="color:#27ae60;">$4$ valid cases</span></li> </ul> </li> <li><strong><span style="color:#27ae60;">$4$ boys</span></strong>: BBBB <ul> <li>How many ways can this happen?</li> <li>$\frac{4!}{4!} = 1$</li> <li><span style="color:#27ae60;">$1$ valid case</span></li> </ul> </li> </ul> <p>In total, we have $16$ cases but <span style="color:#e74c3c;">$5$</span> of them are <span style="color:#e74c3c;">invalid</span> and must be exluded. So really, we&#39;re only dealing with <span style="color:#27ae60;">$11$ valid cases</span>. That is the denominator of our probability calculation. How many of those valid cases make us happy? Only $1$, the case in which all four children are boys.</p> <p><span style="font-size:20px;">$$\frac{1}{11}$$</span></p> <p style="text-align: center;"><span style="color:#2980b9;"><em>Final Answer</em></span></p>