<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-given-probability" target="_blank">Given Probability Exercise</a></p><p><strong><span style="color:#8e44ad;">Given Probability</span></strong> can be a tricky beast. In a nutshell, a given probability calculation assumes that only SOME cases are valid (not all of them). This changes the value of the denominator. </p>
<p><strong><span style="color:#e74c3c;">An Easy Contrast to Illustrate Given Probability</span></strong></p>
<p style="margin-left: 40px;"><strong><u>Scenario 1</u></strong>: An alien flips a fair coin twice. What is the probability it gets heads twice?</p>
<p>$$\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4}$$</p>
<p style="margin-left: 40px;"><strong><u>Scenario 2</u></strong>: An alien flips a fair coin twice. Given that the first flip was heads, what is the probability that the second flip will be heads?</p>
<p style="text-align: center;"><span style="font-size:18px;">Well, that's just $\frac{1}{2}$ right?</span></p>
<p>Yes, that is correct. Notice how the denominator in the first scenario is $4$. This makes sense because we're looking at four different possibilities, with only one of the possibilities making us "happy." </p>
<p style="text-align: center;"><span style="font-size:18px;">TT, HT, TH, <span style="color:#27ae60;">HH</span></span></p>
<p>But in the second scenario, we're actually excluding two of the cases because we're "assuming" that the first flip must be heads. It is "given" that the first flip is heads. So the cases where tails is first are out.</p>
<p style="text-align: center;"><span style="font-size:18px;"><span style="color:#e74c3c;"><s>TT</s></span>, HT, <span style="color:#e74c3c;"><s>TH</s></span>, <span style="color:#27ae60;">HH</span></span></p>
<p><strong><span style="color:#e74c3c;">Another Example</span></strong></p>
<p style="margin-left: 40px;"><em>A couple has four children. If it is assumed or "given" that at least two of the children are boys, what is the probability that all four are boys?</em></p>
<p>If we wanted to solve this without the "given" part, it'd be super straightforward. We would simply do $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$. But that won't work here. We have to exclude the cases that have zero boys or only one boy.</p>
<ul style="margin-left: 40px;">
<li><strong><span style="color:#e74c3c;">$0$ boys</span></strong>: GGGG
<ul>
<li>How many ways can this happen? </li>
<li>$\frac{4!}{4!} = 1$ </li>
<li><span style="color:#e74c3c;">exclude $1$ case</span></li>
</ul>
</li>
<li><strong><span style="color:#e74c3c;">$1$ boy</span></strong>: BGGG
<ul>
<li>How many ways can this happen?</li>
<li>$\frac{4!}{1!3!} = 4$</li>
<li><span style="color:#e74c3c;">exclude $4$ cases</span></li>
</ul>
</li>
<li><strong><span style="color:#27ae60;">$2$ boys</span></strong>: BBGG
<ul>
<li>How many ways can this happen?</li>
<li>$\frac{4!}{2!2!} = 6$</li>
<li><span style="color:#27ae60;">$6$ valid cases</span></li>
</ul>
</li>
<li><strong><span style="color:#27ae60;">$3$ boys</span></strong>: BBBG
<ul>
<li>How many ways can this happen?</li>
<li>$\frac{4!}{3!1!} = 4$</li>
<li><span style="color:#27ae60;">$4$ valid cases</span></li>
</ul>
</li>
<li><strong><span style="color:#27ae60;">$4$ boys</span></strong>: BBBB
<ul>
<li>How many ways can this happen?</li>
<li>$\frac{4!}{4!} = 1$</li>
<li><span style="color:#27ae60;">$1$ valid case</span></li>
</ul>
</li>
</ul>
<p>In total, we have $16$ cases but <span style="color:#e74c3c;">$5$</span> of them are <span style="color:#e74c3c;">invalid</span> and must be exluded. So really, we're only dealing with <span style="color:#27ae60;">$11$ valid cases</span>. That is the denominator of our probability calculation. How many of those valid cases make us happy? Only $1$, the case in which all four children are boys.</p>
<p><span style="font-size:20px;">$$\frac{1}{11}$$</span></p>
<p style="text-align: center;"><span style="color:#2980b9;"><em>Final Answer</em></span></p>