<p><a href="https://www.prepswift.com/quizzes/quiz/prepswift-introduction-to-probability" target="_blank">Introduction to Probability Exercise</a></p><p>In this <strong><span style="color:#8e44ad;">Introduction to Probability</span></strong>, we're going to be pretty general and not-at-all technical. </p>
<p><strong><span style="color:#27ae60;">In a nutshell:</span></strong></p>
<ul>
<li>Probability is a number from $0$ to $1$. </li>
<li>A value of $0$ indicates that something will never happen.</li>
<li>A value of $1$ indicates that it is guaranteed to happen.</li>
<li>Probability can be presented as a decimal, a fraction, or a percentage:
<ul>
<li>$0.25 = \frac{1}{4} = 25\%$</li>
</ul>
</li>
<li>To calculate the probability of an event occurring, create a fraction that has in the numerator the number of cases that make you happy and in the denominator the total number of cases (see below). </li>
</ul>
<p style="text-align: center;"><span style="font-size:20px;"><strong><span style="color:#2980b9;">$probability$ </span></strong>$=\frac{number \ of \ cases \ that \ make \ me \ happy}{total \ number \ of \ cases}$</span></p>
<p><strong><span style="color:#e74c3c;">Example</span></strong></p>
<p>When rolling a fair, $6$-sided die, what is the probability of rolling a number that is a multiple of $3$?</p>
<p style="text-align: center;"><span style="color:#27ae60;">Number of cases that make us happy</span></p>
<p style="text-align: center;">Two: $3$ and $6$</p>
<p style="text-align: center;"><span style="color:#e74c3c;">Total Number of Cases</span></p>
<p style="text-align: center;">Six: $1, 2, 3, 4, 5, 6$</p>
<p style="text-align: center;"><strong><span style="color:#2980b9;">probability </span></strong>$= \frac{2}{6} = \frac{1}{3}$</p>