<p><a target="_blank" href="https://www.prepswift.com/quizzes/quiz/prepswift-roots-rules">Roots Rules Exercise</a></p><p>There are several <strong><span style="color:#27ae60;">Roots Rules</span></strong> that we have to remember.</p>
<ul>
<li><span style="color:#e74c3c;">First rule</span>: an exponent can "cancel" a root out.</li>
</ul>
<p>$$(\sqrt{a})^2 = a$$</p>
<p>$$(\sqrt[5]{7})^5 = 7$$</p>
<ul>
<li><span style="color:#e74c3c;">Second rule</span>: alternatively, a root can "cancel" an exponent out.</li>
</ul>
<p>$$\sqrt{6^2} = 6$$</p>
<p>$$\sqrt[3]{x^3} = x$$</p>
<p>$$\sqrt{x^2} = |x|$$</p>
<ul>
<li><span style="color:#e74c3c;">Third rule</span>: if you multiply two roots together (of the same order root), you can combine what's under the radicals together:</li>
</ul>
<p>$$\sqrt{a}\sqrt{b} = \sqrt{ab}$$</p>
<p>$$\sqrt{5}\sqrt{7} = \sqrt{5 \times 7}= \sqrt{35}$$</p>
<ul>
<li><span style="color:#e74c3c;">Fourth rule</span>: if you divide one root by another (of the same order root), you can combine what's under the radicals:</li>
</ul>
<p>$$\frac{\sqrt{12}}{\sqrt{3}} = \sqrt{\frac{12}{3}}=\sqrt{4} = 2$$</p>