<p><a target="_blank" href="https://www.prepswift.com/quizzes/quiz/prepswift-simplifying-roots">Simplifying Roots Exercise</a></p><p>You can <strong><span style="color:#27ae60;">Simplify Roots</span></strong>, which is pretty cool. That means "pulling out" something from under the radical, and thereby making the number under the radical smaller. Here's how it works:</p>
<ul>
<li>If you're taking the square root of a number, check if there are any perfect square factors in the number. If you're taking the cube root of a number, check if there are any perfect cube factors in the number. If you're taking the fourth root of a number, check if there are any perfect powers of $4$ in the number. You get the idea.</li>
</ul>
<p>$$\sqrt{32}=\sqrt{16 \cdot 2}= \sqrt{4^2 \cdot 2 }$$</p>
<p>$$\sqrt[3]{56}=\sqrt[3]{8 \cdot 7}= \sqrt[3]{2^3 \cdot 7}$$</p>
<p>$$\sqrt[4]{405}=\sqrt[4]{81 \cdot 5}= \sqrt[4]{3^4 \cdot 5}$$</p>
<ul>
<li>Next, "pull" the perfect square or perfect cube (or whatever) out.</li>
</ul>
<p>$$\sqrt{4^2 \cdot 2}=\sqrt{4^2}\sqrt{2}=4\sqrt{2}$$</p>
<p>$$\sqrt[3]{2^3 \cdot 7}=\sqrt[3]{2^3}\sqrt[3]{7}=2\sqrt[3]{7}$$</p>
<p>$$\sqrt[4]{3^4 \cdot 5}=\sqrt[4]{3^4}\sqrt[4]{5}=3\sqrt[4]{5}$$</p>